SDK - Tile Match 2048
2048 circuit SDK.
Environment
- Language: javascript/typescript
How it works
- Essentially what we are trying to accomplish is verifying the game state after a player has made some moves. Once the verifying input is set, call the verify.verifyProof to have the ZK circuits verify the validity of the game.
Game2048Step60CircomVerifier.sol
pragma solidity >=0.7.0 <0.9.0;
contract Game2048Step60CircomVerifier {
// Scalar field size
uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
// Base field size
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
// Verification Key data
uint256 constant alphax = 20491192805390485299153009773594534940189261866228447918068658471970481763042;
uint256 constant alphay = 9383485363053290200918347156157836566562967994039712273449902621266178545958;
uint256 constant betax1 = 4252822878758300859123897981450591353533073413197771768651442665752259397132;
uint256 constant betax2 = 6375614351688725206403948262868962793625744043794305715222011528459656738731;
uint256 constant betay1 = 21847035105528745403288232691147584728191162732299865338377159692350059136679;
uint256 constant betay2 = 10505242626370262277552901082094356697409835680220590971873171140371331206856;
uint256 constant gammax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant gammax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant gammay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant gammay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant deltax1 = 18909290623589372212608388513684575758995519969001892131945528937291220952182;
uint256 constant deltax2 = 2875203449378516743109609553050026568133321502890853732994375713553320658221;
uint256 constant deltay1 = 2489150813694632276856612536291067589951037720943945513539803655879400209720;
uint256 constant deltay2 = 19276775233044448710962620944521828097017666380262997869520596730242392735386;
uint256 constant IC0x = 11128506941297822501254433205268267539034243891395423859217363107759883248654;
uint256 constant IC0y = 3872357426528296580277109136192992878606687753367907579323499892857106028023;
uint256 constant IC1x = 1325018593988210577661405641566795036098275828122695304685926714336229517577;
uint256 constant IC1y = 18686319433822603781462504439484601927718937069209765373470951610790846398728;
uint256 constant IC2x = 17589504352492591802413258511716791489617460014098384868268995008340248338890;
uint256 constant IC2y = 7027550309711617589112326546570913722644950087163227925974727780133140226894;
uint256 constant IC3x = 4588928733530151135947791164368553161142983039351091119141366306492203211553;
uint256 constant IC3y = 18420049025099470438629579198889786216543247788312803323852980551532491788310;
uint256 constant IC4x = 11633399819570956868006897176291153264879053258454880109266347340084667659269;
uint256 constant IC4y = 19112055496166407834117839841578227460244067316266275527869120299506331868886;
uint256 constant IC5x = 2615038044687269628522971510801981316302313068348848272418961384096001575368;
uint256 constant IC5y = 5218493524843539969617657172992904866318833156180894217901135613096728282798;
uint256 constant IC6x = 9270007476823418702361089176679204312677819763479617887398545340750394759725;
uint256 constant IC6y = 14692585592693406186322812589264956004146883092056905736778714505217877929575;
uint256 constant IC7x = 7041501423034499493782096928158436615884067989639971865426967705870706974226;
uint256 constant IC7y = 2171352084991153726633202556319966754825846942596088172174758070182697960381;
// Memory data
uint16 constant pVk = 0;
uint16 constant pPairing = 128;
uint16 constant pLastMem = 896;
function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[7] calldata _pubSignals) public view returns (bool) {
assembly {
function checkField(v) {
if iszero(lt(v, q)) {
mstore(0, 0)
return(0, 0x20)
}
}
// G1 function to multiply a G1 value(x,y) to value in an address
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn, 32), y)
mstore(add(mIn, 64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
mstore(add(mIn, 64), mload(pR))
mstore(add(mIn, 96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
}
function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk {
let _pPairing := add(pMem, pPairing)
let _pVk := add(pMem, pVk)
mstore(_pVk, IC0x)
mstore(add(_pVk, 32), IC0y)
// Compute the linear combination vk_x
g1_mulAccC(_pVk, IC1x, IC1y, calldataload(add(pubSignals, 0)))
g1_mulAccC(_pVk, IC2x, IC2y, calldataload(add(pubSignals, 32)))
g1_mulAccC(_pVk, IC3x, IC3y, calldataload(add(pubSignals, 64)))
g1_mulAccC(_pVk, IC4x, IC4y, calldataload(add(pubSignals, 96)))
g1_mulAccC(_pVk, IC5x, IC5y, calldataload(add(pubSignals, 128)))
g1_mulAccC(_pVk, IC6x, IC6y, calldataload(add(pubSignals, 160)))
g1_mulAccC(_pVk, IC7x, IC7y, calldataload(add(pubSignals, 192)))
// -A
mstore(_pPairing, calldataload(pA))
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q))
// B
mstore(add(_pPairing, 64), calldataload(pB))
mstore(add(_pPairing, 96), calldataload(add(pB, 32)))
mstore(add(_pPairing, 128), calldataload(add(pB, 64)))
mstore(add(_pPairing, 160), calldataload(add(pB, 96)))
// alpha1
mstore(add(_pPairing, 192), alphax)
mstore(add(_pPairing, 224), alphay)
// beta2
mstore(add(_pPairing, 256), betax1)
mstore(add(_pPairing, 288), betax2)
mstore(add(_pPairing, 320), betay1)
mstore(add(_pPairing, 352), betay2)
// vk_x
mstore(add(_pPairing, 384), mload(add(pMem, pVk)))
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32))))
// gamma2
mstore(add(_pPairing, 448), gammax1)
mstore(add(_pPairing, 480), gammax2)
mstore(add(_pPairing, 512), gammay1)
mstore(add(_pPairing, 544), gammay2)
// C
mstore(add(_pPairing, 576), calldataload(pC))
mstore(add(_pPairing, 608), calldataload(add(pC, 32)))
// delta2
mstore(add(_pPairing, 640), deltax1)
mstore(add(_pPairing, 672), deltax2)
mstore(add(_pPairing, 704), deltay1)
mstore(add(_pPairing, 736), deltay2)
let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20)
isOk := and(success, mload(_pPairing))
}
let pMem := mload(0x40)
mstore(0x40, add(pMem, pLastMem))
// Validate that all evaluations ∈ F
checkField(calldataload(add(_pubSignals, 0)))
checkField(calldataload(add(_pubSignals, 32)))
checkField(calldataload(add(_pubSignals, 64)))
checkField(calldataload(add(_pubSignals, 96)))
checkField(calldataload(add(_pubSignals, 128)))
checkField(calldataload(add(_pubSignals, 160)))
checkField(calldataload(add(_pubSignals, 192)))
checkField(calldataload(add(_pubSignals, 224)))
// Validate all evaluations
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem)
mstore(0, isValid)
return(0, 0x20)
}
}
}
Parameter interpretation
- board
- Example of a normal board:
[4,2,16,0,0,0,2,4,0,32,1024,0,0,0,0,0] - We use the nth power of 2 to represent it:
[2,1,4,0,0,,0,1,2,0,5,10,0,0,0,0,0]
- Example of a normal board:
- packedBoard
export function packBoard(board: bigint[]) {
let packed = 0n;
for (let i = 0; i < board.length; i++) {
packed = packed * 32n + board[i];
}
return packed;
}
- packedDir
export function packDirection(direction: bigint[]) {
let packed = 0n;
for (let i = 0; i < direction.length; i++) {
packed = packed * 4n + direction[i];
}
return packed;
}
- direction
- 0: up
- 1:left
- 2:down
- 3:right
- address
- msg.sender
- step
- current Steps
- stepAfter
- next Steps
- nonce
- last execution of interactive contract returned
uint256 constant NONCE_MOD = 21888242871839275222246405745257275088548364400416034343698204186575808495617; struct VerifyData { uint[2] _pA; uint[2][2] _pB; uint[2] _pC; uint[7] _pubSignals; } function generateNonce( VerifyData calldata proof ) internal view returns (uint256) { uint256 nonce = uint256( keccak256( abi.encodePacked( msg.sender, blockhash(block.number - 1), proof._pubSignals[5] ) ) ) % NONCE_MOD; return nonce; }
Assembly parameters
input = {
board,
[packBoard(board[0]), packBoard(board[1])], // is packedBoard
packDirection(direction), // is packedDir
direction,
address,
step,
stepAfter,
nonce
}
Generate proof and publicSignals
const { proof, publicSignals } = await snarkjs.groth16.fullProve(
input,
"game2048_60.wasm",
"game2048_60.final.zkey"
);
How to call verify smart contract
await verifier.verifyProof(
proof.pi_a.slice(0, 2),
[proof.pi_b[0].slice(0).reverse(), proof.pi_b[1].slice(0).reverse()],
proof.pi_c.slice(0, 2),
publicSignals
)